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Pore Scale Spatial Analysis of Two Immiscible Fluids
in Porous Media

HAIM GVIRTZMAN AND PAUL V. ROBERTS
Department of Civil Engineering, Stanford University, Stanford, California

A conceptual model is introduced describing the spatial distribution of two immiscible fluids in the
pore space of sphere packings. The model is based on the ideal soil concept of homogeneous
arrangement of identical spheres but is generalized to include random packing. It quantitatively
analyzes the interfacial area between wetting and nonwetting fluids and between the fluids and the
solid spheres, as a function of the saturation degree. These relationships depend on the packing
arrangement of the spheres, the sphere radius, and the fluid-solid contact angle. The model focuses on
the region of low saturation of the wetting phase, where the wetting phase is comprised of pendular
rings. When the nonwetting phase appears as ganglia, the model assumes single-chamber ganglia.
Three-dimensional graphical illustrations are provided. Three potential applications are pointed out:
(1) to quantify the water-air interface in the unsaturated zone; (2) to analyze connate water interfacial
area in petroleum reservoirs and to assess the effect of surfactants during enhanced oil recovery; and
(3) to estimate the interface between groundwater and floating nonaqueous phase liquids above the

water table.

INTRODUCTION

During the past two decades, increasing effort has been
directed toward understanding and quantifying multiphase
flow in porous media. The impetus for this research stems
from the heightened awareness of groundwater contamina-
tion by organic liquids. This phenomenon has become a
serious environmental threat and endangers public health.
Groundwater contamination by synthetic organic chemicals
was first reported in the literature almost 20 years ago
[McKee et al., 1972; Osgood, 1974]. Since then, most
published reports have concentrated on the contaminant
travel distances and dilution processes. Few studies exam-
ined the process of entrapment and/or mobilization of their
residual saturation also [e.g., Roberts et al., 1982; Kramer,
1982; Atwater, 1984; Villaume, 1985]. Concurrently, many
theoretical and empirical models were developed. These
models focus on describing the relative permeability of each
of the immiscible fluids under the whole range of saturation
[Williams and Wilder, 1971; Bear, 1972; Somers, 1974;
Dullien, 1979). Other models have concentrated on mass
transfer between phases; i.e., dissolution, volatilization, and
absorption [Van Der Waarden et al., 1971; Pfannkuch, 1984,
Roberts et al., 1985; Hunt et al., 1988a]. Several physically
based mathematical models were established using different
numerical codes [Faust, 1985; Pinder and Abriola, 1986;
Corapcioglu and Baehr, 1987, Parker et al., 1987; Delshad
and Pope, 1989].

During the last decade, restoration of contaminated aqui-
fers has become the most important topic and is currently
undergoing intensive development [Thornton and Wootan,
1982; Wilson and Conrad, 1984; Hunt et al., 1988b; Baehr et
al., 1989]. Practically, in most cases the pollution is removed
by pumping, skimming, and ventilating. Recently, many
researchers have been developing biorestoration strategies
using microorganisms capable of degrading hydrocarbons
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[Wilson and Wilson, 1985; McCarty, 1988, McCarty et al.,
1989].

It seems, however, that inadequate attention has been
devoted to microscale (pore scale) investigation, particularly
to the geometrical distribution of the immiscible fluids within
the pores. The interfaces between phases play an important
rule in many processes, and thus analysis of their spatial
configuration might contribute valuable information. The
mass transfer during remediation acts, i.e., dissolution and
volatilization, depends on the available surface area of the
interfaces. Below a certain degree of residual saturation, the
surface area might become a limiting factor. Also, bioreme-
diation efficiency depends sometimes on the available sur-
face area between aqueous and organic phases. The common
hypothesis [Atlas, 1988] that degrading microorganisms po-
sition themselves on these interfaces, a position that assures
them maximal access to both the hydrocarbon substrate and
the water-soluble mineral nutrients, illustrates the impor-
tance of interfaces in these reactions. Moreover, the relative
permeability of two fluid phases through porous media is
affected by the fluid spatial distribution. Specifically, for
multiphase flow it is necessary to consider not only the
friction at the fixed solid-fluid boundaries, but also the
friction at the dynamic fluid-fluid interfaces (each with its
own friction properties), and perhaps also the fluid-fluid-
solid junctions. In addition, in a more general perspective,
basic properties related to the statics and dynamics of two
fluid phases in porous media, such as wettability, capillarity,
tortuousity, connectivity, and residual saturation, are best
understood when described at the pore scale.

Microscale laboratory investigations have explored sev-
eral features. Nuclear magnetic resonance (NMR) imaging
has been used for the detection of entrapped air bubbles in
porous media [Ronen et al., 1986]. Optical microscopy has
been used for the same purpose [Williams, 1966]. Scanning
electron microscopy has been used to photograph water-air
interfaces [Gvirtzman et al., 1987] and to photograph resid-
ual oil ganglia [Chatzis et al., 1983]. Important advances
came from the use of network micromodels [(Dullien, 1979].
The most comprehensive microscale laboratory investiga-
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tion was done by Schwille [1988], who conducted flow
visualization studies in two-dimensional packed glass beads
using optical techniques. He simulated penetration, disper-
sion, and entrapment of both light and dense immiscible
organic liquids into unsaturated and saturated porous media
of different grain-size distributions. However, most of the
observations were basically qualitative, and none of them
has quantified the interfacial area between fluid phases.

This paper quantitatively describe the pore scale spatial
distribution of two immiscible fluid phases according to the
ideal soil model, i.e., packed beds made of homogeneous
sphere grains. Further generalization, allowing different con-
tact angles and random packing, is introduced. Additional
explanations and illustrations are provided using newly
developed, computerized graphical codes [AutoCAD Re-
lease 10, 1988]. The geometrical model will be introduced in
the following section. It will be followed by a few examples
and potential applications: (1) to quantify the water-air
interface in the unsaturated zone; (2) to analyze connate
water interface in petroleum reservoirs and estimate the
effect of surfactants during enhanced oil recovery; and (3) to
estimate the interface between groundwater and floating
NAPLs above its water table.

CONCEPTUAL MODEL
Ideal Soil Model

No progress can be made in analyzing the geometrical
structure of two fluid phases in porous media without a
detailed description of the porous matrix. Pore space models
provide a framework for such an analysis. The objective of
these models is to provide a reasonable idealization of the
geometrical structure of the prototype so that the desired
characteristics can be treated mathematically. To this end,
the model must incorporate the most relevant characteristics
of the prototype, while its complexity should be kept at a
manageable level. This approach is a complement to sto-
chastic analyses.

Van Brakel [1975] summarized and classified almost all
proposed pore space interconnectivity models. His review
started with the simplest kinds of capillary tubes and ended
with the most complicated three-dimensional, randomly
arranged networks composed of tubes and junctions. Addi-
tional advanced and sophisticated networks were proposed
later [Koplik and Lasseter, 1985; Dias and Payatakes, 1986]).
However, most of these network models are unable to
describe the complicated spatial distribution of two fluids in
the three-dimensional pore space by simple physical consid-
erations. Rather, they assume every element of the pore
space to be either full or empty. Therefore in the present
study the ideal soil model was adopted. This model is defined
simply by regarding the solid matrix to be composed of
perfectly spherical particles of identical size packed in
several ordered ways. This conceptual model was originally
introduced in the geology [Graton and Fraser, 1935], chem-
ical engineering [Haughey and Beveridge, 1966], and soil
science [Haines, 1930] literatures. In the present study this
model is expanded and applied to cases where the void space
contains two immiscible fluids. The criteria for describing
the spatial distribution of fluids are based on wettability,
surface tension and capillary pressure considerations. The
interfacial areas between the two fluids as well as between
each of them and the solid matrix are geometrically de-
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scribed and calculated as a function of the sphere packing
and the fluid saturation.

Model Versus Reality

Unfortunately, natural geological strata have porous
structures that are much too complex for complete geomet-
rical description. This is true even for the simpler porous
media such as sand packs. Real porous media usually have a
chaotic microstructure [Chan et al., 1988]. Moreover, when
applied for the description of transport dynamics, such as
capillary rise, Van Brake! [1975] claimed that none of the
existing pore space models can give even a qualitative
description of any observed phenomena. Consequently, the
advantage of using pore space models is doubtful.

On the other hand, the ideal soil concept provides a
suitable model of porous media better than alternative mod-
els. Rose [1958] claimed that postulating spherical particles
is a reasonable approximation of an unconsolidated or
slightly consolidated sand aquifer. This is because of the
high sphericity of most sand particles (due to weathering) as
they occur in nature. Moreover, it is clear from consider-
ations of random packing of oblate and prolate spheroids
that the volume and surface area values are good approxi-
mations of those calculated for packing of the sphere system.
Furthermore, we have generalized the Ideal Soil model to
include random packing of spheres which spread over wide
range of porosity values. It is obvious that such configura-
tions are oversimplified, but they facilitate a study of the
physical phenomena in multiphase systems. Although this
ideal situation does not exist in nature, it provides a concep-
tual framework for analysis and illustrates basic relation-
ships. Particularly, in our case, we use the pore space model
only to describe the static configuration of the pore space
fluids under steady state conditions, and we have not at-
tempted to describe any transport phenomena.

Solid Matrix

Packing of spheres has two extreme cases: cubic packing
(Figure la) is the most open one, with a calculated porosity
of 0.4764, whereas rhombohedral packing (Figure 1b) is the
tightest one, with a calculated porosity of 0.2595. The
packing arrangement is usually defined by a ‘‘unit cell,”
which is the smallest portion of a body which gives complete
representation of the manner of packing and of distribution
of voids throughout the body [Graton and Fraser, 1935). In
our case the unit cell is a rhombohedron, characterized by
the intersection angles o between three orientations of
sphere rows in space (angles at the edges of the rhombohe-
dron). These angles are 90° and 60° in the cubic and rhom-
bohedral packing (Figures 1¢ and 1d), respectively. Defining
the sphere radius as R, the volume of a cubic unit cell is
8R*, and that of a rhombohedral unit cell is 4V2R>. The
latter cell might be divided, for simplification, into one
octahedron and two tetrahedra. Mayer and Stowe [1965]
evaluated the porosity ¢ for the whole range of intermediate
packing

™
s=1—g(l—3cosza'+2cos3 o) 12, Q)]

60° < g < 90°
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Fig. 1.
spheres. The unit cells are defined by a rhombohedron with (¢} o =
90° and (d) o = 60°, respectively. The (¢) and (f) unit voids for both
packing arrangements are also shown (based on Graton and Fraser
[1935]).

(a) Cubic and (b) rhombohedral packings of identical

The *‘unit void’’ is the shape of the fluids contained in the
interstitial space between the spheres in the unit cell. For a
cubic packing there is only one type of pore space element;
that is the void enclosed by eight spheres (Figure fe). Under
rhombohedral packing each unit void is built of one large
pore element inside an octahedron, i.e., enclosed between
six spheres, and two neighboring small pore elements inside
tetrahedra, i.e., enclosed between four spheres (Figure 1f).

Fluid Spatial Distribution

Consider a case in which the wetted liquid is distributed
homogeneously in the void space as pendular rings around
tangent points of spheres. Figure 2 shows a pendular ring
between two spheres and another one isolated from them.
Liquid must accumulate in this configuration, under equilib-
rium conditions, because it requires minimum surface en-
ergy [Smith, 1933]. This situation is common in the unsatur-
ated zone, where the pendular rings are the water, while the
air fills the rest of the pore space [Bear, 1972]. Also, it is
common for the connate water in petroleum and gas reser-
voirs [Morrow and Heller, 1985]. Clear photographs of such
natural pendular rings were obtained by scanning electron
microscope [Gvirtzman et al., 1987, Figures 8 and 9].

The relative size of pendular rings varies from zero, where
only the nonwetting fluid fills the pores, up to the maximum
size of pendular rings, where they meet each other. We
define the pendular ring size using the angle ¢, which is the
angle between the lines connecting the centers of two
neighboring spheres and the line from the sphere center to
the edge of the ring (Figure 3). The angle ¢ varies in the
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Fig. 2. A pendular ring between two spheres and another one

isolated from the bounding solids.

range: 0 < ¢ < o/2. The geometrical structure of a pendular
ring is described by the radii, r; and r,, of the curvatures
formed by intersections of two perpendicular planes with the
fluid interface (Figure 4). The pendular ring structure also
depends on the contact angle of the liquid with the solid
spheres 9. The capillary pressure at the interface can be
calculated using the Laplace equation

pP.= Ywn( - i + i) cos & (2)
ry ra

where 1v,., is the interfacial tension between the wetting and
the non-wetting fluids. Usually, the radius is positive when
the center of the circle including the surface arc is in the
liquid (r,), and negative when in the atmosphere (r,). Here
we define both radii as positive numbers (to fit the geomet-
rical figures). Therefore (2) was modified to include a minus
sign before r;.

We recognize that in many cases the solid spheres are
completely ‘‘coated’” by a very thin water film, a few

Fig. 3. A cross section through the centers of four spheres in a
cubic pack arrangement, o = 90°. The pendular ring size of the
wetting phase is defined by the angle ¢. In this illustration: ¢| = 22°,
@; = 32°, and ¢3 = 0/2 = 45° (where the pendular rings meet and
merge).
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Fig. 4. Cross section through pendular ring for (a) & = 0 and (&)
¥ = 32°. Each of the two cross sections is enlarged below for
detailed geometrical description. The radii r; and r; define the
curvatures of the interface between the two fluids, and f{ x) and g(x)
are functions defining the circle and arc, respectively (see text and
appendix).

molecules in thickness, due to the hydrophilic properties of
the solid. However, we restrict our analysis to spheres
whose radii are bigger than 10~ mm; thus the coating water
volume is negligible compared to the volume of water found
in the form of rings in the grain contacts.

The geometrical analysis that follows provides the volu-
metric content of the wetting and nonwetting fluids and the
specific surface area between the phases. The analysis is
developed in the following steps: (1) A single pendular ring:
identical spheres with zero contact angle, identical spheres
with nonzero contact angle, and nonidentical spheres; and
(2) a medium consisting of spheres containing many pendular
rings: a regular packing and a random packing.

An Individual Pendular Ring

Assume two identical solid spheres tangent to each other,
with a liquid pendular ring between defined by the angle ¢.
First, assume that the contact angle of the liquid with the
solid is zero (¥ = 0). A cross section of these spheres passing
through their centers is shown in Figure 4a. Restricting our
analysis to sphere radii in the range of | mm to 10 mm,
effects of gravity can be neglected because of the large
magnitude of capillary forces in the small pores compared to
the small potential energy difference between the top and
bottom of a pore [Smith et al., 1930; Melrose, 1966; Orr et
al., 1975]. Thus the interface between the fluids is assumed
to have a constant curvature. The pendular ring is charac-
terized by two radii: r, is the radius of the curvature whose
center, a, is out of the liquid; and r, is the radius of the circle
in a perpendicular plane whose center is in the liquid (at the
tangent point between the two spheres). Therefore a = r; +
r,. The edge of the pendular ring, in Figure 44, is the tangent
point between the circles defined by R and r,. The basic
trigonometric relations yield

1 —cos ¢
ry=Rl——
cos ¢

3)

sin ¢ + cos ¢ — |
ry, = R[ } (4)
cos ¢

GVIRTZMAN AND ROBERTS: PORE SCALE SPATIAL ANALYSIS OF IMMISCIBLE FLUIDS

— 010
o
>
a
s 0.08 |
o
£ 0.06 |-
=
<)
> oot
o
2
33 0.02 |
®
T 600
0 60
Angle (degrees)
Fig. 5. Relative volume of an individual pendular ring vs. its

size as expressed by the angle ¢, for two possible contact angles
(¥ = 0 and & = 32°). The size of a pendular ring ranges from zero to
©max (Which equals 53.1° and 37.1°, respectively).

Because the y axis is a symmetry axis (Figures 2 and 4),
the pendular ring is really a solid of revolution and it is
simple to calculate its volume and surface area. Its volume
V, and surface areas were formulated by Rose [1958];
details are given in the appendix;

V= 27rR3{2 —2cos ¢ —tan ¢

[ ) (w )(00549—1)”
‘[2smeg~tano+|——¢ )| — (5)
2 cos ¢

21—cos¢p T
Ayn=4mR Teose J\ZT7® tan ¢ — (1 — cos ¢)

(6)

A,, = 47R*(1 — cos ¢) @)

Figure 5 shows the ratio of the pendular ring volume V, to
a sphere volume V; as a function of ¢. The maximum size of
a pendular ring is reached when the capillary force decreases
to zero, i.e., when r; = r; (equation (2)). On the basis of (3)
and (4), ¢max = 33.1° as shown in Figure 5. Figure 6 shows
the ratio of the interfacial area (4,,, and A, ) of a pendular
ring to a single grain surface area A,.
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Fig. 6. Relative interfacial areas between phases of an individ-
ual pendular ring, A, and A,,, versus its size as expressed by the
angle ¢, for two possible contact angles (3 = 0 and ¥ = 32°).
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Contact Angle Dependence

So far, the contact angle made between the solid surface
and the fluid-fluid interface was assumed zero. However, in
most cases the interface makes an angle ¥ with the solid
surface (Figure 4b). Melrose [1965] developed a generalized
formulation for the surface curvature and the resulting
capillary pressure for this case but did not calculate the
corresponding surface areas and volumes. Following is a
generalized set of equations for the volume and interfacial
area of a pendular ring for § > 0. Here the line MN is
tangent to the arc whose radius is r; at the edge of the
pendular ring, and the line KL is tangent to the sphere at that
point. These two lines intersect at angle 9. The angle w has
to be introduced for this case (Figure 45} and by geometrical
considerations (with angles in radians)

-
i

w=5—<p—19 (8)

Using the law of sines in a triangle

m
sin — | .
2 sinw sin(p+ ¥) 0
r h - a-—1 ©)
then the new radii are defined
h I ~cos ¢
ry == =R (10)
sin w cos (¢ + 39)

r;=R |sin ¢ —

(1 —cos ¢)(1 —sin (¢ + 8)) "
cos (¢ + ) an

The procedure for calculating the pendular ring's volume
and interface areas is similar (see appendix)

p=2nR3%l—COS¢V[I—CMa{ﬂn¢~+anw

sing 1 —cose¢ ()
1 ~cos ¢ — + - (12)
cos w sin w cOs w

{1 —cos ¢
Ay, =4n7R|——
sin w

H{w[(1 — cos ¢) cot w + sin ¢] — (1 — cos ¢)} (13)

and A, is as in (7). Figures 5 and 6 shows the relative
volume and interface area of a pendular ring for the example
of 4 = 32°. Under this situation, ¢, = 37.1° (when r; =
r,). As is expected, for a given size of pendular ring as
defined by the angle ¢, the volume of a pendular ring with ¢
= 32° is larger than that of 4 = 0, but its A, is smaller.

Nonidentical Spheres

More general equations for pendular rings between noni-
dentical spheres (where 4 = 0) were derived by Rose [1958].
For two spheres with radii R, and R, and a pendular ring
characterized by the two respective angles ¢; and ¢,, it is
possible to define r3, r4, and ¢, using simple trigonometrical
relationships (Figure 7):
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Fig. 7. A cross section through the center of a pendular ring

between nonidentical spheres.

RI(R|+R2)(I*COS gpl)
ry= (14)
(Ry— Ry +(R; + Ry) cos ¢,

"4=(R|+r3)COStP|*r3 (]5)

P3=T @ @2 (16)

On the basis of the above mentioned considerations the
volume of this pendular ring is

V,=27w[A+B-C—-D-E] 7
where
1 , )
A :g(Rz +r3)°(R, + R5) sin” ¢,
2 ¢3 ®3
B == 3 si - i — + )
3r3sm(2)sm(2 @
2 - [P
C==-R?sin?|[—
2 ©
D == Rj sin { =
3 2 Sln(z)
¥ , .
E=—2-2(R2+r3)r§ sin @,
and its surface area is
Awn=277‘p3r3
. KX sin ¢3/2
“{(Ry + r3) sin ¢, — ry sin J+ ®3 il (18)
2 <p3/2

Pendular Rings in a Regular
Packed Medium

Figure 8 depicts the spatial distribution of a wetting phase
in cubic and rhombohedral packings (Figures 8a and 85),
their unit cells (Figures 8¢ and 8d) and unit voids (Figures 8¢
and 8f). The volumetric content of each of the two fluids and
their specific interfacial areas in the whole medium is calcu-
lated by extrapolation from a single pendular ring to a unit
cell. During this extrapolation, one has to consider the
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Fig. 8.
spheres with wetting and nonwetting fluids filling the void space. (¢)
and (d) Unit cells and (¢) and (f) unit voids for both packing
arrangements are also shown. The pendular rings are drawn at their
maximum size for a contact angle of zero.

(a) Cubic and (») rhombohedral packings of identical

number of pendular rings contained in a unit cell and the
volume of the unit cell in each of the possible packing
arrangements. The number of pendular rings depends on the
number of spheres which each sphere touches, which is the
‘‘grain coordination number,”’ n. For cubic packing, n = 6,
and for rhombohedral packing, n = 12. A unit cell contains
n/2 complete pendular rings, as each pendular ring belongs
to two neighboring spheres. For example, cubic packing
contains n/2 = 3 (i.e., 12 quarters in Figure 8¢) pendular
rings, and its volume is 8R>. Thus, when extrapolating from
a single pendular ring to the whole medium, one has to
multiply by the factor: kgypic = 3/8R*. A unit cell of
rhombohedral packing, to use another example, contains n/2
= 6 pendular rings, as the cell consists of an octahedron and
two tetrahedra. The octahedron contains 12 parts of a ring,
where each part is 109.47°/360° and each tetrahedron con-
tains six parts of a ring, where each part is 70.53°/360°
(Figure 8d). The volume of a unit cell of rhombohedral
packing is 4V2R3. Thus, when extrapolating from a single
pendular ring to the whole medium, one has to multiply by
the factor: Kpompe = 6/4V2R?. A general equation for
extrapolation from a single pendular ring to a unit cell of
identical spheres is

n/2 3n(l — €)
k: =

4 e 1 87R?
37 \1-¢

(19)

Therefore extrapolation of pendular ring volume and surface
areas to the whole medium is calculated by

Apack = kApendular (20
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Fig. 9. Relative interfacial area between wetting (w), nonwet-
ting (n), and solid (s) phases in a cubic packing of spheres as a
function of the pendular ring saturation degree, for two possible
contact angles. Maximum wetting phase saturation achieved when
pendular rings merge or drain (see text).

(21)

On the basis of the above considerations, Figures 9 and 10
show the relative interfacial areas between the three phases
for cubic and rhombohedral packing, respectively. The
specific surface area of the solid spheres, A, is also differs
between the two packing configurations (Figure 11).

An interesting phenomenon regarding the effect of the
non-zero contact angle liquids is demonstrated in Figures 9
and 10. The maximum wetting phase saturation (at ¢p,,)
under cubic packing is larger for perfectly wetting liquids (&
= 0) than for intermediate wetting liquids (3 = 32°). For
rhombohedral packing the opposite is true: namely, the
saturation degree of a liquid with & = 32° is higher than with
@ = 0. The reason lies in the two opposing tendencies of
partially wetting liquid (& > 0): the volume of such pendular
ring is bigger for a given ¢ (Figure 5), but the capillary forces
are smaller and the liquid drains under smaller ¢,,,,. There-
fore under cubic packing a wetting liquid with 4 = 32° will
drain at ¢ = 37.1°, making its maximum saturation only 13%,
whereas a liquid with 4 = 0 achieves a maximum of 18%
saturation (Figure 9). For rhombohedral packing the pendu-
lar rings merge at ¢ = 30° < ¢, and the pendular rings can
not be drained (C, > 0). Therefore the volume of a liquid
with & = 32° achieves a maximum saturation of 34%,
whereas a liquid with 4 = 0 achieves maximum saturation of
only 24% (Figure 10).

Vpack =k Vpendular

w
< 10
=

08T %, Prd -
2 % L e Awn (0)

Joe ”~

< o6} S, e e Asw (0)
o L [— Asn (0
Q . ... ©)
£ 04 ot — AWN (32)
2 P < st ——— AW (32)
< 7 B T
- o2k Asn (32)
. Y
2
‘t'u‘ 0.0 1 1 )
> 0.00 0.10 0.20 0.30
o

Wetting Phase Saturation

Fig. 10. Relative interfacial area between wetting (w), non-
wetting (n), and solid (s) phases in a rhombohedral packing of
spheres as a function of the pendular ring saturation degree, for two
possible contact angles. Maximum wetting phase saturation
achieved when pendular rings merge (see text).
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Fig. 11. Specific surface area of identical sphere packs as a
function of the sphere radius for the two extreme cases of packing
geometry: cubic and rhombohedral.

Random Packing

Random packing of identical spheres creates a mixed
arrangement of pores with complicated geometries. The
points of contact between a given sphere and adjacent
spheres and their space distribution are complicated too.
Random packing of spheres may create a wide range of
porosity values. The relationship between porosity £ and the
average grain coordination number n was discussed by
Haughy and Beveridge [1969). They compared theoretical
relationships with experimental evidences. They reviewed
four different empirical models describing the coordination
number frequency distribution for randomly packed beds.
We adopt their empirical relationship

1
n=126.49 — N ; 0.2595 = £ =< 0.4764 (22)

- £

that fits the two end points of cubic (¢ = 0.4764) and
rhombohedral (¢ = 0.02595) packings, and shows nonlinear
dependence between ¢ and n, as was found from experimen-
tal studies.

A random pack can also be approximated by an equivalent
regular one. Three approaches were suggested for describing
the equivalent medium. Smith et al. [1930] suggested con-
sidering the random-packed medium as a composition of two
portions: cubic and rhombohedral chambers, homoge-
neously mixed together. They derived expressions for the
porosity and equivalent coordination number as a function of
the fraction of the two components. Smith [1932] also
suggested another approach of considering the medium to be
composed of only rhombohedral units, but with equidistant
spacing between the spheres, adjusted to fit any given
porosity. Mayer and Stowe [1965] suggested an equivalent
medium by letting the edge angle of the unit cell, o, vary in
the range 60° = ¢ < 90°.

Adopting the third approach, the interfacial areas between
phases for a random packing of identical spheres can be
estimated. A random packing with a porosity ¢ can be
considered as equivalent to an effective packing of a theo-
retical rhombohedron with a specific edge angle o, which can
be evaluated using (1). The size of a single pendular ring then
varies in the range 0 < ¢ < o¢72. The grain coordination
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number # of this packing can be estimated by (22). Extrapo-
lation from a single pendular ring to the packed medium will
be calculated by (19), (20), and (21). Now it is possible to plot
the interface area between phases as a function of the
wetting phase saturation degree for any given porosity of
randomly packed spheres and for any given contact angle.
However, the interface area function can not yet be approx-
imated for a random pack of nonidentical spheres.

Nonwetting Phase Ganglion

Payatakes [1982] defined an oil ganglion as ‘‘a nodular
blob of a non-wetting phase that occupies at least one and
usually several adjoining chambers of the void space in a
permeable medium.’” During its displacement a nonwetting
phase loses its continuity and discrete ganglia are trapped
and sometimes become immobile. When all openings be-
tween a void and its neighboring voids are closed by merging
of pendular rings all around, a spherical ganglion is formed,
and its radius can be as large as the maximum available
radius. The assumption of ganglia distribution as discrete
spherical droplets was adopted by several investigators
[Pfannkuch, 1984, DeZabala and Radke, 1986; Hunt et al.,
1988a). When a ganglion is composed of two or more
contiguous chambers, each of the units will have a spherical
structure except the side where two units are merged. At this
contact point the nonwetting throat will be surrounded by
pendular rings of the wetting phase. On the basis of the
Percolation theory, Larson et al. (1977, 1981] have deter-
mined the statistical distribution of ganglia size and volume
after the displacement of a nonwetting phase by a wetting
phase. Payatakes [1982] stated that at the end of secondary
oil recovery, residual oil exists in the form of discrete oil
ganglia occupying 25-50% of the void space. Typically, oil
ganglia at this stage have sizes ranging from one to fifteen
elemental changer volumes. On the basis of these simplifi-
cations the volumes and the interface areas of ganglia could
be calculated in various packing arrangements. However,
quantitative consideration of the geometry of ganglia is
outside the scope of the present paper.

To extend the description of the interface area function to
the region of high wetting-phase saturation, it is necessary to
determine the ganglion configuration in the void cell. We will
adopt the above mentioned, somewhat simplistic assump-
tion, that the nonwetting phase is distributed in the pores
only as single-chamber, spherical, isolated ganglia, whose
radius varies between zero and the largest pore opening. The
maximum possible radius of these ganglia can be 0.7321R,
0.4142R, and 0.2247R, for cubic, octahedral and tetrahe-
dral void cells, respectively. The curves shown in Figures 12
and 13 were derived by considering that a unit cell in a cubic
packing contains one spherical ganglion, while a unit cell in
a rhombohedral packing contains 3 spherical ganglia; i.c.,
one in an octahedral void and two in two neighboring
tetrahedral voids.

Nevertheless, there is an intermediate range of saturation
degrees which is uncovered. This range is between the stage
where the wetting phase pendular rings meet each other and
the stage where the non-wetting phase assumes the shape of
isolated spherical ganglia surrounded by the wetting phase.
This intermediate range is unstable and is affected by hydro-
static hysteresis. This type of hysteresis, which occurs
within an individual pore space, was discussed by Haines
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Fig. 12. Specific interfacial area between phases as a function of
the wetting phase saturation under a cubic packing of 0.25-mm-
radius spheres (for & = 0). The curves are determined for the
pendular and insular stages but are estimated for the funicular stage
due to hysteresis.

[1930] and Smith [1933]. There is a definite limited range of
positions which a stable interface may occupy, and imbibi-
tion and drainage behave differently. For example, during
drainage, when the non-wetting phase begins to enter a given
pore, any advance in the interface is accompanied by an
increase in capillary pressure. But if a point is reached where
the advancing interface undergoes a decrease in curvature
and hence in capillary pressure, such an interface is no
longer configurationally stable. It ‘‘jumps’ very rapidly,
displacing the wetting phase from the pore. These jumps are
usually called Haines jumps. The reverse situation is true for
imbibition [Melrose, 1965]. The geometrical distribution of
the two liquids is then complex, and the value of the
interfacial area between the phases jumps between fixed
upper and lower limits. Hence Figures 12 and 13 contain a
undefined region, denoted by dotted lines.

POTENTIAL APPLICATIONS

Unsaturated Zone—Water and Air

Under equilibrium conditions, any pendular ring has fixed
volume and interfacial areas, and the net mass transfer
exchange across the interface is zero. The distribution of
saturation of wetting liquid along a column of porous mate-
rial varies with height. Three types of water saturation were
defined by Versluys [1917], and accordingly, three zones
along the unsaturated column were defined: pendular, funic-
ular, and insular. The latter is known also as the capillary
fringe zone. In the ‘‘pendular’’ zone at the upper part of the
column the liquid is retained in isolated masses and each
mass is a ring of liquid wrapped around the contact points of
pairs of adjacent grains. Proceeding downward, the rings
increase in size until they begin to coalesce and merge into
more complicated masses, which is the ‘‘funicular’’ zone.
Descending farther down the soil column, the more compli-
cated liquid masses grow until finally a stage is reached
where they merge and form a capillary surface which ex-
tends completely across the porous body; below this extends
the ‘‘insular” zone which is the saturated part of the
capillary fringe. In other words, in the pendular zone the
wetting fluid is discontinuous while the nonwetting fluid is
continuous. In the funicular zone, both fluids are essentially
continuous. In the insular zone the wetting fluid is continu-
ous while the nonwetting is discontinuous [Bear, 1979].
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Smith [1933] claimed that, for uniform packed spheres, if
a sufficiently long time has elapsed for achieving thermody-
namic equilibrium, a balance will exist between gravity and
capillary forces; the saturation distribution as a function of
height can then be approximated by the Kelvin equation
[Thomson, 1870]:

C, 7(1 1)
=—=—|—+—]cos ¥
non

(23)

Equation (23) is only an approximation, as it ignores (1)
deviation of gas from ideality, (2) deviation of liquid from
incompressibility, and (3) deviation in vapor pressure distri-
bution, [Melrose, 1966].

The individual isolated pendular rings will be ‘‘connect-
ed’’ to the bulk water phase by mass transfer via the vapor
phase. If the curvatures of liquid masses at the same height
above a free liquid are not equal, there will be evaporation
from one and condensation onto the other until the curva-
tures become equal. The theoretical basis for this claim is
that the well-known barometric formula (the relationship
expressing the change of barometric pressure with elevation
at constant temperature) may be applied to describe the
vapor pressure distribution as a function of height above the
free water surface. Figures 14 and 15 describe the distribu-
tion of C,, and A; versus the saturation degree for the cubic
and rhombohedral packings, respectively, under these cir-
cumstances.

Petroleum Reservoir—Water and Oil

Oil reservoirs form by accumulation of oil droplets, orig-
inating from source rocks, in geological traps during geolog-
ical eras. The oil droplets tend to rise due to buoyancy forces
and as oil accumulates in the trap, water is displaced. A
substantial fraction of water, however, is found to remain
along with the oil at heights well above the transition zone
between the oil and its underlying aquifer [Morrow and
Heller, 1985]. The vertical distribution of saturation degree
along the transition zone fits the Kelvin distribution, as the
geological time scale is long enough for achieving equilib-
rium conditions. The establishment of equilibrium depends
on diffusional transport of dissolved water molecules
through the oil phase. Figures 16 and 17 describe the
distribution of C,, and A; versus the water saturation degree
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Fig. 13. Specific interfacial area between phases as a function of

the wetting phase saturation under a rhombohedral packing of
0.25-mm-radius spheres (for 4 = 0). The curves are determined for
the pendular and insular stages, but are estimated for the funicular
stage due to hysteresis.
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Fig. 14. Relation of water-air interfacial area (A,,) to the
retention curve function (C, versus §,) of a cubic packing of
spheres with sphere radius of 0.25 mm (circles) and 1 mm (dia-
monds).

for the cubic and rhombohedral packings, respectively, with
9 = 32°

In enhanced oil recovery, surfactants are used to reduce
the interfacial tension between oil and water [Morrow and
Heller, 1985]. Moreover, the surfactants cause an increase of
the contact angle 9 and thus reduce the interface area
between oil and water. This phenomenon is illustrated by
our geometrical model. Figure 5 implies that for a given

Fig. 15.
retention curve function (Cp, versus §,) of a rhombohedral packing
of spheres with sphere radius of 0.25 mm (circles) and 1 mm
(diamonds).

Relation of water-air interfacial area (A,,) to the
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Fig. 16. Relation of water-oil interfacial area (A,,) to the
retention curve function (C, versus §,) of a cubic packing of
spheres with sphere radius of 0.25 mm (circles) and 1 mm (dia-
monds). Contact angle of 32° and interfacial tension of 29.6
dynes/cm were used.

volume of pendular ring, changing of the contact angle from
¥ = 0 to 93 = 32° causes decrease of ¢ from 40° to 35°. Such
a change is equivalent to the reducing of A,,,, by about 25%
(Figure 6). A better estimation can be obtained from Figures
9 and 10: Under cubic packing, for 2% saturation degree of
connate water for example, changing the contact angle from
% = 0to & = 32° decreases A, by 25%. Under rhombohe-

Awn 20

Fig. 17. Relation of water-oil interfacial area (A,,) to the
retention curve function (C, versus §,) of a rhombohedral packing
of spheres with sphere radius of 0.25 mm (circles) and I mm
(diamonds). Contact angle of 32° and interfacial tension of 29.6
dynes/cm were used.
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dral packing, for 24% saturation of connate water, such a
change causes decreases of A, by 30%. These principles
can be applied to any particular case of random packing;
only knowledge about the initial and final contact angles

ledge abil

(before and after the addition of the surfactants) is necessary.

Floating NAPL Above Groundwater

Under nonequilibrium conditions, the volume of the pen-
dular rings changes over time, owing to diffusional mass

P ey gosol ara alons

lllC llUllWClLllls gausua alyv aldu

lldllblcl UCleCCIl plldbcb
subject to volume changes due to mass transfer, but they
may also flow as distinct masses. Therefore the interface
area between phases can be described as a function of the
saturation degree, but not as a function of height above
water table.

Such a case is common when groundwater is contami-
nated by NAPL [Hoag and Marley, 1986; Schwille, 1988].
When a mass of hydrocarbons or halogenated hydrocarbons
enters into the subsurface as a result of a leak or spill, it
mainly penetrates as a distinct phase through the unsatur-
ated zone, partially dissolves into the soil moisture and
partially evaporates in the aerated pores. When the capacity
of the unsaturated zone is limited in relation to the organic
liquid volume, it penetrates downward and reaches the water
table. Organic liquids which are lighter than water will
accumulate as a liquid lens floating above the water table
[Osgood, 1974; Dowd, 1984]. However, halogenated organic
liquids will penetrate downwards and might accumulate at
the bottom of the aquifer [Villaume, 1985].

The interface between floating lens of organic liquid above
the water table is similar to the natural transition zone
between water and oil in a petroleum reservoir. The differ-
ence is in the temporal changes due to mass transfer by
dissolution or by water table fluctuations. Therefore the
interfacial areas between phases can be calculated for any
given saturation degree based on Figures 9 and 10. The
effectiveness of bioremediation actions depends among
other parameters on the available surface area for bacterial
activity, namely, the wetting-nonwetting interface. The
maximum interface area between water and NAPL is
achieved at about 30% water saturation, and it might be an
additional parameter for choosing the optimum depth for
stimulating biotransformation.

SUMMARY

A conceptual model is introduced describing the spatial
distribution of two immiscible fluid phases in the pore space
of sphere packings. The model is based on the ideal soil
concept of homogeneous arrangement of identical spheres
and is generalized to include random packing as well. The
model describes the interfacial area between fluids and
between the fluids and the solid spheres as a function of the
wetting-phase saturation degree. This function depends on
the sphere packing arrangement, the sphere radius and the
fluid-solid contact angle. The model focuses on the pore
scale, but is generalized to cover homogeneous media at
larger scale. The model focuses on the region of low satura-
tion, where the wetting phase is composed of pendular rings,
but not when it appears as ganglia. The generality of this
approach is limited by its reliance on the simplifying assump-
tion of identical and spherical grains, which is uncommon in
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nature. Nevertheless, it provides insight into the form and
quantity of interfaces between fluids at the pore scale. Further
research is needed for packs of nonidentical spheres.

Three potential applications of the model are discussed:
(1) Quantitative analysis of the interface area between water
and air in the unsaturated zone of phreatic aquifers. The
interface areas are described in relation to the retention
curve of the medium. (2) The interfaces between oil and
connate water in petroleum reservoirs can be analyzed when
the specific contact angle is given. Moreover, the model
pmvmes ii‘lSiglu into the waﬁging of the interfacial area
when surfactants are applied during enhanced oil recovery.
(3) When groundwater is contaminated by floating NAPLs,
the interface area between the two liquids can be determined

as a function of their partial saturation.

APPENDIX

The plane that is tangent to two adjacent spheres at their
contact point divides the pendular ring into two identical
halves. For the purpose of simplification, the following
calculations deal only with one half. The coordinate system
was chosen such that the origin is at the tangent point
between the spheres, as seen in Figure 4a. The large circle
of the sphere cross section, whose radius is R, is mathemat-

ically described by
x2+(y-R)?=R? (A1)

and the small circle of the pendular ring cross section, whose
radius is ry, is described by

(x—a)+y?=r? (A2)
where
a=r +r, (A3)

The volume of a half pendular ring, which is a solid of
revolution, can be calculated by integration using the
method of cylindrical shells [Edwards and Penney, 1982):

Vo, 1
2" L 2mx[ flx) — g(x)] dx (A4)
where
fixy=y=yRT—x2+R (A5)
g =y=\-(x-a? (A6)
1=R sin ¢ (A7)
h = R(1 - cos ¢) (A8)

Substituting (A5) and (A6) into (A4), the volume of the whole
pendular ring will be

1 g
Vv, = 417f x(yR? — x>+ R) dx
0

1 —_—
—47rf xyrp—(x—a)’dx  (A9)
L#]

which was analytically solved to be equal to
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V, = 277R3{2 — 2 cos ¢ — tan ¢[2 sin ¢ — tan ¢

)

The interface between the two fluids is calculated by the
method of revolving an arc about the axis lying in its plain,
the y axis [Edwards and Penney, 1982]:

Avn  [1 dg\*
= | 2axyl+ (] d

Substituting (A3) and (A6) into (A11) and differentiating

1 (a—x)?
Ao =47 x4yl + Y] dx (A12)
" ri—(x—a)

and it was analytically solved to be equal to

A :47,-R2_l_—£ﬂ T_ t - (1 - )
wn cos ¢ ) ¢ | 1an ¢ Cos ¢

(A13)

(A1)

When the contact angle is not zero, as shown in Figure 4b
(8 > 0), then substituting (10) and (11) in (A9), in conjunction
with (A3) and (AS)(A7), the volume and interface area will
be

V,= 27rR3{(1 - cos <p)2[l - cot w[sin ¢ + cot w

sing 1 -—coseg A
1 —cos ¢ — + -
() sin w cos w

}

(A14)
1 — cos
Ay = 4nR2(——,—l)
Sin w
{ef(1 — cos ¢) cot w + sin 9] — (1 — cos ¢)} (A1)

NOTATION

a sum of curvature radii.
A, surface area of a single solid grain.
A, specific surface area of a solid pack.
A;, surface area between solid and wetting phases of a
single pendular ring.

A, surface area between wetting and non-wetting
phases of a single pendular ring.

A, surface area between solid and non-wetting phases
of a single pendular ring.

flx) function of a circle defined by the principal cross
section of a sphere.

g(x) function of an arc defined by the principal cross

section of a pendular ring.
g gravitational acceleration.
h axial height of a pendular ring.
k extrapolation factor.
! radial length of a pendular ring.
n grain coordination number.
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P_. capillary pressure.
ry radius of a curvature whose center is in the
nonwetting phase.
r, radius of a curvature whose center is in the wetting
phase.
R solid grain radius.
S. wetting-phase saturation fraction of total porosity.
volume of a single solid grain.
V, volume of a single pendular ring.
x distance variable in horizontal direction.
y distance variable in vertical direction.
interfacial tension between wetting and nonwetting
fluids.
¥ solid-liquid contact angle.
p water density.
£ porosity.
¢ expansion angle of a pendular ring.
maximum expansion angle of a pendular ring.
o angle of a rhombohedron edge.
w arc angle of a pendular ring (where 9 > 0).
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